Publications

Displaying 91 - 100 of 143 total publications

Paul, A. L., Zupanska, A. K., Ostrow, D. T., Zhang, Y., Sun, Y., Li, J. L., Shanker, S., Farmerie, W. G., Amalfitano, C. E., Ferl, R. J. (2012). Spaceflight Transcriptomes: Unique Responses to a Novel Environment, Astrobiology. 2012 Jan;12(1):40-56. doi: 10.1089/ast.2011.0696. 

Dataset: GLDS-pending

Theriot, C. A., Zanello, S. B., (2014). Molecular effects of spaceflight in the mouse eye after space shuttle mission STS-35. Gravitational and Space Research: publication of the American Society for Gravitational and Space Research, 2(1), 08-2014.

Dataset: GLDS-87

Beheshti, A., Chakravarty, K., Fogle, H., Fazelinia, H., da Silveira, W. A., Boyko, V., Polo, S. J. L., Saravia-Butler, A., Hardiman, G., Taylor, D., Galazka, J. M., Costes, S. V. (2019) Multi-omics analysis of multiple missions to space reveal a theme of lipid dysregulation in mouse liver, Sci Rep 9, 19195 (2019) doi.org/10.1038/s41598-019-55869-2

DatasetsGLDS-168GLDS-47GLDS-25GLDS-137

Vandenburg, C., Beheshti, A. (2020). MicroRNAs (miRNAs), the final frontier: The hidden master regulators impacting biological responses in all organisms due to spaceflight. The Health Risks of Extraterrestrial Environments, March 9, 2020.

Berrios, D., Weitz, E., Grigorev, K., Costes, S.V., Gebre, S. G., Beheshti, A. 2020, Visualizing Omics Data from Spaceflight Samples using the NASA GeneLab Platform, EPiC Series in Computing, vol 70, pages 89--98, doi.org/10.29007/rh7n

Khodadad, C. L., Hummerick, M. E., Spencer, L. E., Dixit, A. R., Richards, J. T., Romeyn, M. W., Smith, T. M., Wheeler, R. M., Massa, G. D. (2020) Microbiological and Nutritional Analysis of Lettuce Crops Grown on the International Space Station. Front Plant Sci. 2020 Mar 6;11:199. doi: 10.3389/fpls.2020.00199.

DatasetsGLDS-267, GLDS-268, GLDS:269

Jiang, P., Green, S. J., Chlipala, G. E., Turek, F. W., Vitaterna, M. H. (2019). Reproducible changes in the gut microbiome suggest a shift in microbial and host metabolism during spaceflight. Microbiome 2019, 7:113, doi.org/10.1186/s40168-019-0724-4

Datasets: GLDS-48, GLDS-168

Abshire, C., Prasai, K., Soto, I., Shi, R., Concha, M., Baddoo, M., Flemington, E. K., Ennis, D. G., Scott, R. S., Harrison, L. (2016). Exposure of Mycobacterium marinum to low-shear modeled microgravity: effect on growth, the transcriptome and survival under stress. npc Microgravity 2, 16038 (2016). doi.org/10.1038/npjmgrav.2016.38

Dataset: GLDS-90

McDonald, T. J., Stainforth, R., Miller, J., Cahill, T., da Silveira, W. A., Rathi, K. S., Hardiman, G., Taylor, D., Costes, S. V., Chauhan, V., Meller, R., Beheshti, A. (2020). NASA GeneLab Platform Utilized for Biological Response to Space Radiation in Animal Models. Cancers 2020, 12(2), 381; doi.org/10.3390/cancers12020381 (registering DOI).

Datasets: GLDS-63, ;GLDS-52, GLDS-114GLDS-21, GLDS-4, GLDS-47, ;GLDS-25, GLDS-98, GLDS-99, GLDS-100, GLDS-101, GLDS-102, GLDS-103, GLDS-104, GLDS-105GLDS-168, GLDS-242, GLDS-161, GLDS-162, GLDS-163, GLDS-168, GLDS-61, GLDS-111, GLDS-80, GLDS-109, GLDS-73, GLDS-117

Zupanska, A. K., LeFrois, C., Ferl, R. J., Paul, A-L. (2019). HSFA2 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight. Int J Mol Sci, Jan 17;20(2). pii: E390. doi: 10.3390/ijms20020390.

Dataset: GLDS-205